Файл с книжной полки Несененко Алексея
OCR: Несененко Алексей август-декабрь 2002

Глава третья

СКОЛЬКО ЛЕТ ЖИВЕТ ПУШКА

Как запереть газы в стволе

Мы уже знаем, что на открытом воздухе порох не взрывается, а сравнительно медленно горит. Нам же для выстрела нужен непременно взрыв. Иначе говоря, нам нужно, чтобы порох быстро превратился в газы.

Как это сделать?

Наиболее простое средство - это увеличить давление в том пространстве, где находится порох. А для этого мы должны поместить порох в замкнутое со всех сторон пространство, чтобы газам, образующимся при взрыве, некуда было уйти и они сразу же начали повышать давление. Большое давление нужно, очевидно, и для того, чтобы выбросить снаряд из ствола.

Таким замкнутым пространством является та часть ствола, в которую вкладывается пороховой заряд.

Спереди его как бы закупоривает вложенный в ствол снаряд.

Сзади, или, как говорят артиллеристы, с казенной части, ствол тоже должен быть прочно и плотно закрыт. Еще сто лет назад ствол в орудии отливали так, что он имел только одно отверстие: дуло. Сзади орудие отверстия не имело, и "дно" его не позволяло пороховым газам уходить назад при выстреле.

Много времени приходилось затрачивать для заряжания такого орудия. Вложив в дуло заряд, нужно было досылать его в глубь ствола длинным шестом с особым наконечником - прибойником. Когда заряд попадал на свое место, тогда тем же шестом забивали пыж.

Рис. 27. Так заряжали орудие в старину

Вспомним "Бородино": "Забил заряд я в пушку туго"...

Затем вкладывали в дуло снаряд и опять-таки шестом толкали его в глубь ствола, пока он не доходил до пыжа (рис. 27).

Все эти неудобства были еще терпимы в те времена, когда орудия делались гладкоствольными. Но от гладкоствольных орудий отказались уже около ста лет тому назад и перешли к нарезным.

Основной недостаток гладкоствольных орудий заключался в незначительной их дальнобойности и в малой меткости. Шаровые снаряды, вкладываемые с дула, должны были свободно входить в ствол. Но при этом неизбежен был зазор - щель между снарядом и стенками канала ствола; в этот зазор при выстреле прорывались пороховые газы. Другая беда состояла /в том, что шаровые снаряды быстро теряли скорость при полете в воздухе, и дальность их была невелика. Поэтому, естественно, появилось стремление заменить шаровые снаряды продолговатыми, с заостренной головной частью.

Такие снаряды, конечно, лучше должны прорезать воздух, потеря скорости в воздухе у них должна быть меньше.

Однако, если таким снарядом выстрелить из гладкостенного ствола, то снаряд не полетит головой вперед: он начнет кувыркаться в воздухе. А это сведет на-нет почти все преимущества продолговатого снаряда.

Чтобы избежать кувыркания снаряда в воздухе, оказывается нужно заставить его быстро вращаться при полете. Как же это сделать?

Надо придать ему вращение в то время, когда он движется еще в стволе.

Рис. 28. Ствол современного нарезного орудия

Для этого на внутренней поверхности ствола стали делать нарезы, то-есть желобки, вьющиеся по винтовой линии (рис. 28), а на снаряде поместили ведущий поясок, врезающийся в нарезы.

Рис. 29. "Предок" поршневого затвора

При движении в таком стволе снаряд с пояском вынужден вращаться.

Применять нарезные орудия в широких пределах смогли лишь тогда, когда техника позволила искусно резать металл точными инструментами на специальных станках. Лишь при машинном способе производства, на заводах, а не в кустарных мастерских, родилось современное нарезное орудие.
Рис. 30. Современный поршневой затвор
Рис. 31. Поворот поршня при закрывании затвора

В наше время орудия имеют уже не гладкие, а нарезные стволы. В такой нарезной ствол втолкнуть снаряд с дула уже значительно труднее: мешает поясок. Нужна большая сила, чтобы он врезался в нарезы. Мешает, впрочем, не только поясок. Попробуйте зарядить с дула современное длинноствольное дальнобойное орудие: до его поднятого вверх дула и не добраться.

Вот основные причины, почему теперь заряжают орудия не с дула, а с казенной части. Само собой разумеется, что ствол отливают теперь так, что он имеет уже не одно, а два отверстия - спереди (дуло) и сзади, откуда орудие заряжают.

Но это последнее отверстие должно быть открыто лишь при заряжании; при выстреле оно должно быть плотно закрыто. Поэтому пришлось казенную часть снабдить такой пробкой, которую можно было бы при заряжании вынимать, а перед выстрелом снова вставлять. Такой пробкой как раз и является затвор орудия. Затвор орудия должен очень прочно и плотно закрывать ствол, иначе образуется щель и в нее при выстреле прорвутся пороховые газы. Но, вместе с тем, затвор должен легко и быстро открываться для заряжания и так же легко и быстро закрываться после заряжания. Как же согласовать эти требования?

Этого удалось добиться не сразу: долго мешал низкий уровень техники обработки металлов. Однако заряжать орудия с казны и, следовательно, снабжать их затвором приходилось' еще на заре развития огнестрельного оружия. Заряжание с дула было тогда невозможно, так как порох делался в виде липкой пороховой мякоти, прилипавшей к стенкам ствола при заряжании с дула. Поневоле приходилось применять затворы, хотя они далеко не удовлетворяли нашим требованиям. Один из затворов того времени показан на рисунке 29. Такой затвор запирал канал ствола достаточно прочно. Но чтобы открыть такой затвор, его нужно было много раз поворачивать вокруг оси, так как для прочности требуется много витков и все они должны работать. Слишком долго и неудобно.

Пороховые газы и при этом затворе все же прорывались, а нагар еще больше затруднял открывание и закрывание затвора.

Современные орудия (за редким, нетипичным исключением) заряжаются с казны и имеют затворы, по идее очень похожие на своих "предков". Но они несравнимо более совершенны и удобны.

Теперь, например, тоже применяют затвор в виде навинтованной пробки. Но нарезка на затворе и на затворном гнезде не сплошная: участки, имеющие нарезку, чередуются с гладкими.

Закрыть такой затвор не сложно: нужно поставить его так, чтобы его нарезные участки пришлись как раз против гладких участков в гнезде, и затем вдвинуть затвор. Теперь стоит только повернуть затвор, и нарезные его участки войдут в нарезные участки гнезда. Затвор прочно закроет ствол. Вместо многих оборотов нужно повернуть затвор всего на четверть оборота! И все витки будут удерживать затвор. Такие затворы называются поршневыми (рис. 30).

Держать вынутый затвор в руках было бы слишком тяжело и неудобно, да и направить его верно при закрывании было бы трудно: малейший перекос - и затвор не войдет.

Поэтому поршневые затворы всегда укрепляют на "раме". А рама шарнирно связана со стволом.

Затвор снабжен рукояткой. Ось рукоятки связывает затвор со стволом. Нажмем на ручку этой рукоятки и потянем ее назад от ствола. Сперва повернется поршень. Нарезные его участки встанут против гладких участков в гнезде. Ничто не мешает теперь поршню плавно выйти из гнезда ствола.
Рис. 32. Клиновой затвор. Сверху вниз: затвор открыт; затвор закрыт
Рис. 33. Поворот рукоятки заставляет клин переместиться и открыть ствол

Ствол открыт. Можно заряжать орудие.

После заряжания опять беремся за рукоятку и поворачиваем раму к стволу. Поршень легко войдет в свое гнездо и затем повернется на четверть оборота (рис. 31). Затвор закрыт.

Не менее удобен и клиновой затвор (рис. 32).

Клин помещается в затворном гнезде ствола и, в отличие от поршня, не нуждается в специальной раме; при открывании клин не совсем выходит из затворного гнезда и, таким образом, постоянно связан со стволом.

Для открывания и закрывания клинового затвора также имеется рукоятка. Поворот рукоятки заставляет клин переместиться в затворном гнезде и открыть ствол (рис. 33).

Для закрывания достаточно повернуть рукоятку к стволу: клин вдвинется в гнездо и закроет ствол.

Эти две системы затворов, наиболее простые и удобные, получили наибольшее распространение.

Теперь, когда мы знаем, как запираются современные орудия и как устроены их затворы, зарядим орудие.

Прежде всего нужно открыть затвор, а затем вложить снаряд и заряд в ствол.

Для помещения заряда и той части снаряда, которая, остается позади ведущего пояска, ствол внутри имеет "камору".

Когда орудие заряжается патроном, в котором снаряд и заряд в гильзе соединены вместе еще до заряжания, камора называется "патронником".

Камора или патронник обычно не цилиндрические, а слегка конические.

Камора шире нарезной части и соединяется с ней коротким коническим скатом.

Вложим снаряд и заряд в камору (рис.34). Теперь можно снова закрыть затвор.

Но один только затвор все же не обеспечивает нас полностью от прорыва пороховых газов назад: очень трудно совершенно точно подогнать поверхности затвора и ствола. А если останется малейшая, незаметная на взгляд щелка, пороховые газы непременно устремятся в нее. Чтобы помешать этому, применяются специальные приспособления - обтюраторы.

На рисунке 35 показан один из таких обтюраторов.

При таком устройстве орудия применяется "картузное" заряжание: заряд пороха помещается в особом мешке - картузе, который делается из нетлеющей (например, шелковой) ткани. Тлеющие после выстрела остатки картуза могли бы преждевременно воспламенить очередной заряд.

Рис. 34. Орудие заряжено
Рис. 35. Обтюратор для поршневых затворов

Рис. 36. Гильза в роли обтюратора (перед выстрелом и в момент выстрела)

В большинстве современных орудий применяется не картузное, а гильзовое заряжание: заряд помещают в латунную гильзу. При таком заряжании орудие не нуждается в специальных обтюраторах. Гильза не пропустит газов: при выстреле дно и стенки ее под давлением газов очень плотно прижмутся к затвору и к стенкам каморы. Значит, гильза и явится обтюратором (рис. 36).
Рис. 37. Вытяжная трубка

Гильза - очень простой и удобный обтюратор.

Помимо этого, очень часто гильза соединяет капсюль, заряд и снаряд в одном патроне, чем упрощается заряжание и повышается скорострельность.
Рис. 38. "Ударный механизм" до выстрела и в момент, когда курок оттянут и ударник соскочил с боевого взвода

Почему же не применяют гильзу во всех орудиях? Оказывается, в орудиях большого калибра применение гильзы усложняет заряжание. Гильза получается громоздкой и тяжелой. Соединение заряда со снарядом невыгодно из-за больших размеров и веса получаемого патрона. В некоторых орудиях применяют поэтому короткую гильзу, или поддон, служащий только обтюратором. В орудиях же очень крупного калибра и от поддона приходится отказаться и заменить его постоянным уже, известным нам, обтюратором (рис. 35).

Затвор закрыт, орудие заряжено, - можно стрелять. Нужно только зажечь заряд.

В орудиях с картузным заряжанием заряд воспламеняется с помощью вытяжной трубки (рис. 37) или электрозапала, вставляемых в запальный канал.

При гильзовом заряжании заряд воспламеняют с помощью уже знакомого нам капсюля, который помещается в капсюльной втулке, ввинченной в дно гильзы. А механизм, разбивающий капсюль, помещается в затворе. Называется он "ударным механизмом" (рис. 38).

Главной частью этого механизма является ударник с надетыми на нем трубкой ударника, боевой пружиной и гайкой. Нарезка на гайке шире, чем на ударнике, поэтому ударник может немного двигаться в навинченной гайке.

Один конец пружины упирается в кольцевой уступ в трубке ударника, а другой конец нажимает на гайку ударника и стремится продвинуть ее вместе с ударником вперед.

Если потянуть за курок, ударник пойдет назад, а трубка ударника - вперед; сожмется боевая пружина. При достаточном оттягивании курка боевой взвод ударника соскочит с зацепа курка и сжатая боевая пружина пошлет ударник вперед.

Гайка ударится в уступ затвора, а ударник по инерции пройдет еще несколько вперед; напомним, что он может немного двигаться в гайке благодаря ее широкой нарезке.

Боек ударника разобьет капсюль. Ударник, а затем и курок будут возвращены в исходное положение силой той же боевой пружины. Механизм готов к очередному выстрелу -

Произведем выстрел. Заряд воспламенится, сгорит и превратится в газы.

Затвор и гильза плотно запирают ствол. Прорыв пороховых газов назад невозможен. Но газы могут прорваться вперед, в зазоры между снарядом и стволом. При громадном давлении пороховых газов достаточно, как мы уже говорили, ничтожной щелки, чтобы газы смогли воспользоваться ею и произошла утечка.
Рис. 39. В старых орудиях часть газов прорывалась вперед, обгоняла ядро в стволе Рис. 40. В современных орудиях прорыв газов вперед почти устранен

В гладкоствольных орудиях так обычно и происходило: часть газов прорывалась вперед, обгоняла снаряд, растрачивала свою энергию впустую (рис. 39).

Но в современных орудиях возможность этой утечки почти устранена.

Медный поясок снаряда, ведущий его по нарезам, в самом начале движения снаряда плотно вжимается в ствол и после этого уже не дает газам обогнать снаряд (рис. 40).

Казалось бы, теперь уже вся энергия порохового заряда направлена на дно снаряда. Казалось бы, нет больше места потерям!

Однако это не так.

Потери все же остаются, хотя, конечно, в гораздо меньшей степени, чем прежде.

Отдача

Орудие готово к выстрелу. Резко оттянут курок...

Сейчас произойдет выстрел!

Не бойтесь, не зажмуривайте глаз и посмотрите на орудие в момент выстрела. Резкий звук... Из дульной части вслед за снарядом вырывается яркий длинный язык пламени.

Что это такое?

Это - нагретые до очень высокой температуры пороховые газы. Они еще не успели остыть и потерять свою упругость. Давлением этих газов выброшен снаряд. Теперь они сами покидают ствол. Соединяясь с кислородом воздуха, они воспламеняются и мгновенно сгорают ярким белым пламенем. Хотя пороховые газы некоторое время после вылета из дула и толкают снаряд, но действие их незначительно. С ними выбрасывается неиспользованной часть энергии порохового заряда.

Можно ли как-нибудь обратить, хотя бы частично, энергию этих газов на нужную, полезную работу?

Мы узнаем скоро, что это сделать можно.

Растрата энергии происходит, однако, не только после вылета снаряда. Она происходит и тогда, когда снаряд еще движется в стволе. Пока снаряд не вылетел из ствола газы находятся в закрытом со всех сторон пространстве. При этом они будут действовать на разные тела: на снаряд и на орудие. И притом в противоположных направлениях: на снаряд - вперед, а на орудие, через затвор - назад.

Газы стремятся вырвать затвор из его гнезда в стволе. Но затвор и ствол соединены прочно. Затвор, когда он закрыт, как бы слит со стволом. Газы давят на затвор: этим самым они давят и на ствол.

Рис. 41. Представьте себе вместо пружины упругие пороховые газы, и вы поймете, почему при выстреле происходит отдача

Поэтому, когда снаряд под давлением газов начинает двигаться вперед, ствол стремится двигаться назад. Это - отдача. Когда начинает двигаться снаряд, ствол не может не двигаться. Чтобы понять это, возьмите два шарика: один большой и один маленький (рис. 41). Положите их на стол. Поместите между ними пружину и шариками сожмите ее. Теперь сразу отпустите оба шарика. Они под действием пружины разлетятся в разные стороны. Маленький шарик откатится значительно дальше большого. Так вот, маленький шарик - это снаряд, большой - это ствол, а пружина - давление пороховых газов. Толчок, который получает большой шарик, - отдача. Ствол не может не двигаться, если в нем двигается снаряд, так как и на ствол, и на снаряд действует одновременно одна и та же сила - давление пороховых газов.

Отдача при выстреле неизбежна. Мы ее испытываем при стрельбе из огнестрельного оружия - из револьвера "или из ружья. Она неизбежна и в орудии, но тут она во много раз сильнее.

Причиняет ли отдача неприятности? Несомненно. Если ствол закреплен на лафете, отдача резко толкает орудие, что способствует расстройству всех его механизмов. Орудие откатывается назад, а иногда и подпрыгивает. Из-за отдачи орудие нельзя делать слишком легким: оно будет тогда менее устойчиво, будет сильнее подпрыгивать.

После отката орудие приходится накатывать,-это отнимает время, уменьшает скорострельность.

Рис. 42. Так приходилось работать артиллеристам при обороне Севастополя в 1855-1856 годах

Какие затруднения причинял откат всего орудия, показано на рисунке 42. Перед нами одна из батарей, принимавших участие в героической обороне Севастополя в 1855-1356 годах. Перед выстрелом артиллеристам приходилось отбегать от орудия в стороны. После отката орудия - снова подбегать к нему и, зарядив его, с трудом накатывать на прежнее место. Между выстрелами проходило не менее одной-двух минут.

Совсем избавиться от отдачи мы никак не можем. Откат же всего орудия можно устранить. Достаточно для этого сделать прочный лафет и закрепить его так, чтобы он не двигался.

Так и делали в некоторых небольших орудиях старых систем. Но в современных мощных орудиях отдача получается такой сильной, что ее результат - откат - так просто не уничтожишь.

Однако бороться с неудобствами, причиняемыми откатом, все же нужно и можно. Для этого современные орудия устроены так, что при выстреле откатывается не все орудие, а только его ствол. Лафет же закрепляется и при выстреле почти неподвижен.

Откат ствола тормозится, а после отката ствол возвращается в первоначальное положение.

Все это выполняется с помощью противооткатных приспособлений. Как они устроены, мы узнаем несколько позже.

В самых последних образцах современных орудий, помимо противооткатных приспособлений, уменьшают скорость отката еще другим способом: напору газов, давящих на затвор назад, противопоставляют силу, которая толкает ствол вперед.

Рис. 43. Дульный тормоз заставляет вылетающие при выстреле пороховые газы тормозить откат ствола

Где найти эту силу?

Оказывается, к борьбе с откатом можно привлечь те самые газы, которые вылетают при выстреле из дула ствола вслед за снарядом (рис. 43).
Рис. 44. Полуавтоматический затвор (упрощенная схема). Сверху вниз: затвор закрыт; начало открывания затвора: затвор открыт, пружина взведена и готова закрыть затвор, как только кончится заряжание

На дульную часть навинчивают трубу с прорезями или щелями. Она свободно пропускает снаряд. Вырывающиеся же за снарядом и расширяющиеся сразу по выходе из дула газы ударяют по пути в стенки щелей трубы. Они дают трубе, а вместе с ним и стволу толчок вперед. Это и уменьшает энергию отката.

Такую трубу называют дульным тормозом.

Так выбрасываемые из дула газы используются для уменьшения энергии отката.

В некоторых современных орудиях энергия отката ствола используется для полезной работы: она производит открывание и закрывание затвора. Затвор после выстрела сам открывается и выбрасывает гильзу. А при заряжании - сам закрывается. При таком устройстве нужно только заряжать орудие и, когда затвор закроется, оттягивать курок.

Такие затворы называются полуавтоматическими. Принцип их действия показан на рисунке 44. Есть оружие, в котором и заряжание, и выстрел тоже производятся энергией отдачи. Это - автоматическое оружие. Полностью автоматичны все пулеметы и некоторые орудия небольшого калибра.

Так частично и энергию, отката можно, если подойти к ней умело, перевести из бесполезной и даже вредной для орудия работы в полезную.

Отчего "умирает" орудие?

Если отдача и сокращает жизнь орудия, то очень незначительно.

Отчего же орудие "заболевает" и "умирает"?

Мы не рассмотрели еще одного действия газов - давления на стенки ствола. Оно стремится разорвать ствол.

Вспомним, что давление газов очень велико; оно доходит до 4 000 килограммов на один квадратный сантиметр; очень велика и температура газов, достигающая иногда 3000 градусов. Мы уже знаем, что значат эти числа.

Чтобы ствол не разорвался, его делают из хорошей, крепкой стали. Стенки его должны быть значительной толщины.

Казалось бы, чем толще мы сделаем стенки, тем прочнее будет ствол. Ничего, как будто, сложного в изготовлении прочного ствола нет.

На самом деле это далеко не так. К сожалению, одним утолщением стенок ствола прочности не достигнуть.

Это очень легко понять, если представить себе на минуту, что ствол сделан не из металла, а из резины.

Где больше всего растянется резина при выстреле из такого ствола?

Это нетрудно проверить даже без выстрела. Вырежем резиновое кольцо и вдвинем в него конический брусок. Кольцо растянется.

Но как?

Больше всего растянется внутренний слой кольца. А наружные слои растянутся очень мало или вовсе не растянутся. Это показывает, что они или принимают очень малое участие в сопротивлении давлению изнутри, или вовсе не сопротивляются (рис. 45).

Рис. 45. Внутренние слои металла нескрепленного ствола работают больше, чем наружные

Так же точно обстоит дело и с металлом ствола.

Не весь металл ствола, сопротивляясь давлению, работает одинаково. Металл на внутренней поверхности ствола выносит на себе наибольшую тяжесть давления.

Чем дальше от канала к наружной поверхности,

тем меньше работа металла. Поэтому стенки стволов нет никакого смысла делать очень толстыми: дело не только в толщине. Дело в том, чтобы облегчить работу внутреннего слоя, перенести часть ее на внешние слои.

Каким же способом заставить наружные слои металла принять большее участие в общей работе сопротивления давлению?

Такой способ нашли и широко применяют в современной артиллерии: ствол орудия делают теперь не из одной, а из двух труб - одна в другой.

Вот как делают такой ствол. Наружную трубу берут с каналом, чуть более узким, чем внутренняя труба; обычным путем вставить внутреннюю трубу в. наружную уже нельзя. Тогда наружную трубу нагревают. Она расширяется. Когда она достаточно расширится, надвигают ее на внутреннюю трубу. Получается ствол, состоящий из двух труб.

Затем стволу дают остынуть. Наружная труба, остывая, будет стремиться сжаться, вернуться к своему прежнему размеру; но сжатию ее мешает внутренняя труба. Наружной трубе не остается ничего другого, как только сжать внутреннюю трубу. Сама же она при этом останется несколько растянутой. Она будет все время напряжена и готова к сопротивлению.

Что же произойдет при выстреле?

При выстреле давление газов будет стараться раздуть сначала внутреннюю трубу. Но ведь она крепко сжата наружной трубой. Поэтому внутренняя труба не сопротивляется растяжению до тех пор, пока не будет растянута давлением до тех размеров, которые она имела перед сжатием наружной трубой. А наружная труба? Она уже и так растянута, а здесь ей еще приходится растягиваться. Ясно, что она сразу же начнет сопротивляться этому растяжению. И, как видим, раньше внутренней трубы. Так мы заставляем работать не только внутренние, но и наружные слои металла.

Ствол, сделанный таким способом из двух труб, сжимающих одна другую, оказывается гораздо прочнее простого, несоставного (нескрепленного) ствола той же толщины.

Стволы составляются не только из двух, но иногда из трех и даже четырех труб. Называют такие составные стволы скрепленными.

Скрепленный ствол хорошо сопротивляется разрыву и очень прочен. Но все же главную тяжесть работы несет на себе внутренний слой металла. Это он, несмотря на скрепление, подвергается наибольшему давлению и нагреву. Поэтому естественно, что именно здесь металл "устает" раньше, чем в других слоях: он начинает крошиться, делается хрупким.

Не нужно забывать, что внутри ствол имеет нарезы, желобки. Они отделены друг от друга узкими выступами металла - полями нарезов. Вот эти-то выступы и начинают разрушаться в первую очередь. Орудие "заболевает"; оно уже не может выполнять свою работу так хорошо, как прежде.

"Болезнь" орудия, подобно туберкулезу, имеет ряд стадий. Сначала выкрашивание незначительно и не препятствует стрельбе (рис. 46). Затем оно начинает отзываться на скорости снаряда, на меткости стрельбы. Ведь исчезновение нарезов увеличивает камору, изменяет плотность заряжания, а значит, и давление

Рис. 46. Постепенное разрушение (разгар) нарезов орудия в канале. Наконец, выкрашивание заходит так далеко, ствол оказывается настолько изъеденным внутри, что стрельбу вести уже нельзя. Это - последняя стадия. Орудие становится негодным.

Итак, "смерть" орудия наступает от "внутренней болезни" ствола. Приходит в негодность только тонкий слой металла на внутренней поверхности ствола. Весь остальной организм орудия обычно еще вполне здоров и мог бы работать дольше.

Отчего же выкрашивается металл?

Вызывается это несколькими причинами.

Горячие пороховые газы нагревают металл, затем следует охлаждение его. Это способствует увеличению его хрупкости. Хрупкость еще более увеличивается от химического действия газов.

К тому же часть раскаленных газов в начале движения снаряда все же проникает быстрыми- струйками между снарядом и стенками ствола: медный поясок снаряда в самый первый момент выстрела еще не успевает плотно прижаться к стенкам ствола. Струйки газа действуют на металл подобно тому, как действует сильная горячая струя воды на лед: они "размывают" металл. Поэтому-то разгар ствола и начинается всегда в самом начале нарезов, у каморы.

Затем - трение пояска о нарезы. Оно вначале очень велико. Ведь поясок должен врезаться в нарезы, принять новую форму.

Все это, вместе взятое, приводит к тому, что орудие "умирает", вернее - "умирает" его ствол.

Сколько же лет живет орудие?

Будем говорить о деятельной, рабочей жизни орудия.

Ведь когда мы определяем, как долго служила нам только что перегоревшая, электрическая лампочка, мы, понятно, берем то время, которое она действительно горела. Например, 5-6 часов в день. Это время помножаем на число дней всей "жизни" лампочки. А остальное время мы просто не принимаем во внимание.

Рис. 47. "Туалет" артиллерийского орудия: как и чем чистят и смазывают его

Орудие работает только во время выстрела.

Какова же общая продолжительность рабочей жизни орудия? Чтобы вычислять ее, нужно знать время, в которое протекает выстрел, и число выстрелов, которое способен вынести ствол до полного своего износа.

Время, в которое протекает выстрел, обычно измеряется сотыми и даже тысячными долями секунды. Будем его считать за 0,01 секунды для обычных орудий и за 0,05 секунды для орудий сверхдальнобойных.

Число выстрелов до полного износа зависит от могущества орудия.

Чем могущественнее орудие, тем меньше это число, так как тем большее давление пороховых газов необходимо при каждом выстреле. Для средних по могуществу орудий дивизионной артиллерии это число в среднем равно 10 000 выстрелов. Для очень могущественных орудий, а в особенности для орудий сверхдальнобойных, оно уменьшается до 1 000, до 100 и даже до 50 выстрелов.

Значит, рабочая жизнь среднего по могуществу орудия равна 10 000 сотых секунды, или ста секундам: одной минуте и сорока секундам. А жизнь сверхдальнобойных орудий равна всего двум с половиной секундам!

Зато как деятельна эта жизнь!

За свой короткий "век" орудие может разрушить самые прочные укрепления неприятеля, вывести из строя тысячи его бойцов, нанести ему непоправимый урон...

Напомним, что до сих пор мы говорили только о долговечности ствола.

Долго ли живут остальные части орудия?

Жизнь их значительно дольше. Лафет и его механизмы расстраиваются и приходят в негодность не столько от стрельбы, сколько от перевозки. Особенно это стало заметно при переходе с конной тяги на механическую. Орудия, рассчитанные на малую скорость передвижения, приспособленные для перевозки лошадьми, обычно скоро изнашивались и приходили в негодность от тряски и ударов, неизбежных при больших скоростях. Пришлось вводить специальные подрессоривающие приспособления. Вместо железных шин стали применять резиновые. Эти меры продлили жизнь орудия. Сейчас можно считать, что орудие способно выдержать несколько тысяч километров пути.

Это значит, что орудие, если бы ствол его не заболевал, могло бы жить долгие годы.

"Омоложение" в артиллерии

Орудие любит заботу о себе и требует внимательного ухода (рис. 47). Если за орудием не будет тщательного ухода, жизнь его сократится в десятки раз,

Пороховые газы, особенно газы бездымного пороха, портят сталь ствола при выстреле. Поэтому совершенно необходимо производить чистку и смазку тотчас после окончания стрельбы, не давая продуктам горения пороха долго воздействовать на сталь ствола. Если не чистить и не смазывать ствол, появится ржавчина, ствол будет испорчен. Чем чаще производится чистка, чем тщательнее смазка, тем дольше сохраняется ствол.

Это - главная мера, способствующая сохранению "здоровья" ствола. Это, так сказать, "гигиена ствола".

А в помощь этому профилактическому средству есть еще иное - "хирургическое". Его применяют тогда, когда "болезнь" зашла уже очень далеко и одними "гигиеническими" мерами ничего не сделаешь.

Его применяют тогда, когда орудие находится при смерти.

Вспомним, что орудие "умирает", в сущности говоря, от "внутренней болезни" ствола: от разрушения тонкого слоя металла. Весь остальной металл ствола вполне "здоров".

Естественно возникла мысль о возможности замены не ствола в целом, а всего-навсего тонкого слоя металла внутри ствола.

Стали высверливать изношенный слой и вместо него вставлять в стволы тонкостенные трубы. Вместо замены тяжелого ствола достаточно теперь сменить легкую внутреннюю трубу, и "омоложенное" орудие снова может стрелять.

Эта тонкостенная труба носит название "лейнер" (рис. 48). "Лейнер" по-английски значит "рубашка".

Рис. 48. "Омоложение" орудия: в его ствол вставляют "лейнер"

Лейнер служит как бы рубашкой для ствола, изолируя его металл от образующихся при выстреле пороховых газов.

В некоторых современных орудиях, как наших, так и заграничных, лейнер вставляют сразу же при изготовлении ствола, не ожидая износа орудия. Поэтому лейнер - не только средство омоложения орудия. Он позволяет вместе с тем повысить могущество орудия, увеличить, например, его заряд.

Пусть поверхность канала ствола придет в негодность на две-три тысячи выстрелов раньше. Это теперь не так страшно: мы можем обновить ствол тут же на позиции. Достаточно лишь сменить лейнер. И стоимость этой операции "омоложения" орудия невелика. Зато, чем больше будет могущество орудия, тем больше будет скорость снаряда, тем дальше мы бросим снаряд.


Файл с книжной полки Несененко Алексея
OCR: Несененко Алексей август-декабрь 2002